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We determined the bulk electronic structure of the prototypical Heusler compound Cu2MnAl by
measuring the angular correlation of annihilation radiation using spin-polarized positrons. To this end, a
new algorithm for reconstructing 3D densities from projections is introduced that allows us to corroborate
the excellent agreement between our electronic structure calculations and the experimental data.
The contribution of each individual Fermi surface sheet to the magnetization was identified, and summed
to a total spin magnetic moment of 3.6� 0.5 μB=f:u:.
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Heusler alloys exhibit a most diverse range of phenom-
ena [1]. Amongst these are, e.g., half-metallicity which was
first predicted in Heusler systems in the early 1980s [2,3],
the most promising magnetic shape memory material
Ni2MnGa [4], and the zero gap semiconductor Fe2TiSn
[5]. Just recently, it was reported that Mn2CoAl represents a
new class of materials, so called spin gapless semiconduc-
tors [6]. The nature of the electronic interactions in Heusler
compounds is known to be rather delicate. Detailed knowl-
edge of the electronic structure is vital for tailoring specific
physical properties such as magnetism and electron spin-
polarization, since features in the band structure depend
very sensitively on the composition [2,7].
Being the prototype of all Heusler alloys [8], Cu2MnAl

has also become a model system for understanding the
electronic correlations in this class of materials [2,7,9,10].
In particular, the interplay between the localized d electrons
and the delocalized electrons in Mn based Heusler systems
is still under discussion, and in this context the shape of the
Fermi surface is a key ingredient of the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction [7,11–13]. Besides
these fundamental questions, Cu2MnAl has also a large
relevance for applied physics as a neutron polarizer and
monochromator material [14,15].
A powerful experimental technique which can provide

unique information about the bulk electronic structure is
the measurement of the two-dimensional angular correla-
tion of electron-positron annihilation radiation (2D-ACAR)
[16]. Spin-polarized 2D-ACAR has been used to prove
half-metallicity in NiMnSb [17,18] and to determine the
electron-electron interaction strength in Ni [19]. Compared
to angle-resolved photoemission spectroscopy (ARPES)
the (high energy) positron probing the bulk is not affected
by the surface, and the photon-matter interaction (which

can complicate the analysis of ARPES data) does not have
to be considered.
In this Letter we report spin-resolved 2D-ACAR mea-

surements on a full Heusler compound in order to reveal
the spin-polarized Fermi surface which is thought to play
an important role in mediating the magnetic interactions.
We show experimentally how the contributions from
majority and minority bands can be separated yielding
the effective magnetic moments of each Fermi surface
sheet. Using our novel algorithm we reconstructed the spin-
polarized 3D electron-positron momentum density [often
referred to as the two-photon momentum density (TPMD)
or ρ2γ]. Furthermore, we scrutinize the experimental results
against band-theoretical calculations.
When a positron is implanted in a solid, it will thermalize

on a time scale of a few picoseconds and subsequently
annihilate with an electron, conserving energy and momen-
tum, and predominantly producing two γ photons. The
transverse momentum in particular is conserved by an
angular deviation from collinearity. This deviation is
measured by coincidence detection of the γ photons with
position resolving detectors, yielding a 2D projection of the
momentum of the annihilated pair [16]. Importantly, the
momentum of the pair is dominated by that of the electron,
with the finite positron momentum broadening the reso-
lution. Thus a projectionM of ρ2γ along the direction p can
be measured:

Mðp⊥1; p⊥2Þ ¼
Z

∞

−∞
dp ρ2γðpÞ; ð1Þ

where p, p⊥1 and p⊥2 are three orthogonal directions in
momentum space.
ρ2γ can be approximated as the sum (over all occupied

electron states, i, and bands, j) of the Fourier transform of
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the product of the positron Ψþ and electron Ψ− wave
function [20]:

ρ2γðpÞ ∝
X
occ. i

X
j

����
Z

dr e−iprΨ−
i;jðrÞΨþðrÞ

ffiffiffiffiffiffiffiffi
γðrÞ

p ����
2

; ð2Þ

where γðrÞ is called the enhancement factor which takes
into account the electron positron correlations. In the
Independent Particle Model (IPM), γ ¼ 1 but often better
descriptions are needed for quantitative agreement [21].
Owing to parity violation in the weak interaction, posi-

trons created in βþ decay are longitudinally spin-polarized
[22]. The fraction of polarized positrons, P, is defined by
P ¼ N↑=ðN↓ þ N↑Þ, with the numbers of positrons with
their spins parallel and antiparallel to the direction of
magnetization of the sample being N↑ and N↓, respectively.
The mean emission energy of 22Na yields a maximum
P ¼ 0.835, although in practice it is reduced by back-
scattering inside the source and by geometrical factors.
In our experimental configuration it has been measured to be
P ¼ 0.673 [19].
In a ferromagnet, the lifting of the degeneracy of the

energies of electrons with opposite spins leads to there being
more electrons of one spin (majority electrons) than the other
(minority electrons). Since in metals the electron-positron
pair annihilates overwhelmingly in the spin singlet configu-
ration, positrons with different polarizations will annihilate
predominantly with electrons from either the majority or
the minority spin channel. By reversing the polarity of the
magnetic field at the sample position, the magnetization of
the sample can be reversed. Making the reasonable assump-
tions that the sample is fully magnetized and the 3γ
annihilation can be neglected, we can express our measure-
ment as a linear combination of the electron positron
momentum density of the majority spin channel (ρmaj)
and the minority spin channel (ρmin):

Mp=a ∝ P
ρmaj=min

λmaj=min
þ ð1 − PÞ ρmin =maj

λmin =maj
ð3Þ

for a magnetic field pointing parallel (p) and antiparallel (a)
to the direction of positron emission, where λ represents the
annihilation rates for the majority and minority spin channels,
respectively.
If bothMp andMa are measured, straightforward algebra

shows that it is possible to isolate the majority and minority
spectra. Further insight into spin-polarized 2D-ACAR mea-
surements can be found elsewhere [18,19,23].
A single crystal disc-shaped sample of Cu2MnAl with a

diameter of 8 mm and a height of 1 mm was prepared and
oriented with a (011) face by x-ray Laue back reflection,
and its surfaces polished [15]. The spin magnetic moment
was determined via Compton scattering at 300 K and a field
of 1 T to be 3.2 μB=f:u: [24]. This is in good agreement
with previously published values [25–28]. Complementary

positron annihilation experiments performed on our sample
revealed that the vacancy density is below 9.7 ×
10−5 per atom [29].
The measurements were carried out at the 2D-ACAR

spectrometer at the Technische Universität München [30].
We recorded spectra at five different projection angles in
the (011) plane, namely, along ½01̄1� and [100] and three
further projections at angles 29.8°, 35.3°, and 59.8° with
respect to the [100] direction at room temperature. At each
angle we took data for opposite sample magnetizations in a
field of 1.0 T, collecting typically 1.3 × 108 counts.
With 2D-ACAR, 2D projections of ρ2γ are measured.

Nevertheless, the 3D ρ2γ can be recovered by measuring a
series of 2D projections at different angles. Several meth-
ods have been applied to solve this inverse problem, and
can be grouped into three categories, namely, direct trans-
form methods, methods using function expansion, and
iterative methods [31]. To use an iterative method it is
necessary to express the measurement as a linear operator,
T. To find a reconstruction x, we can construct a least-
squares-based function fðxÞ, which has to be minimized:

fðxÞ ¼
X
α;i

ðMα − TαxÞ2i
σ2α;i

; ð4Þ

where α indexes the measured projections, and i represents
the data points of the spectrum. The estimated error of the
measurement is expressed by σ. Since this minimization
problem is underdetermined with the typical number of
measured projections, it is necessary to apply a regulari-
zation functional. The most popular choice for the
reconstruction of 2D-ACAR data, and the one used here,
is an entropylike function gðxÞ ¼ P

ixi lnðxiÞ [32],
although other regularization functionals have been inves-
tigated, too [33,34].
The maximum potential of iterative methods has not yet

been exploited for experimental 2D-ACAR reconstruc-
tions. Here we show its power by means of an algorithm
that uses the full crystal symmetry, properly accounts for
the experimental resolution (previous approaches have
deconvoluted the resolution separately [35]), and preserves
the statistical errors of the data through correction with the
momentum sampling function (MSF). The MSF is a
geometrical correction of the data because of the finite
size of detectors [36]. A similar approach with a para-
metrized Fermi surface has been proposed by Leitner et al.
[34]. Here we have implemented the operator Tα in Eq. (4)
to comprise a projection operator Rα, creating a projection
of the density x in the irreducible wedge onto a plane, a
convolution operator C with the resolution function of the
experimental setup, and a diagonal matrix S with the values
of the MSF:

Tα ¼ RαCSnα; ð5Þ
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where the scalar factor nα corresponds to the number of
counts in a measurement nα ¼

P
iMα;i. Thus, the

reconstruction x will be normalized and the tensor Tα

can be interpreted as the simulated measurement of a test
density x.
To complement the experimental results, the electronic

structure was calculated using the ELK APWþlo code [37]
with the lattice constant of our sample that was determined
by x-ray diffraction (a ¼ 5.961 Å). The generalized gra-
dient approximation (GGA) was used to approximate the
exchange-correlation functional [38], and the resulting
band structure was found to be in reasonable agreement
with previous calculations [39,40]. The calculated spin
moment was 3.51 μB=f:u: In order to simulate the slightly
reduced spin magnetic moment at room temperature [15],
calculations were also performed at a fixed spin moment
of 3.2 μB=f:u:.
Since the positron is delocalized, its density is vanish-

ingly small across the macroscopic sample. This means that
the positron wave function can be calculated from the self-
consistent electron Coulomb potential (with opposite sign)
together with an electron-positron correlation potential.
Here, the parameter-free GGA extension of the electron-
positron correlation potential and enhancement factors
parametrized by Drummond et al. (hereinafter referred to
as “DR” enhancement) are used [41,42]. The momentum
distribution was calculated from the wave functions using a
tetrahedron interpolation method [43].
First we show that our measurement could separate

contributions from the majority and minority spin electrons
from the spectra with opposite magnetic field directions,
using the solution of Eq. (3). The anisotropy of these
distributions is obtained by subtracting the radial average of
the spectrum. In the left upper halves in Figs. 1(a) and 1(b)
the anisotropy is shown for the [100] projection. The
isotropic part in a spectrum has two main origins, namely,

annihilation with tightly bound core electrons and the
annihilation in defects [44]. The pronounced anisotropic
signal, persisting to quite large momentum, is a strong
indication of the high quality of the crystal. It is also clearly
revealed that the majority and minority densities have
strikingly different anisotropies, which in this case is
mainly due to the two spin channels having different
Fermi surface topologies (since most of the fully occupied
bands are common to both spins).
In the right-hand lower halves of Fig. 1 we present the

results of the electronic structure calculations. These
theoretical spectra were convolved with the point spread
function of the spectrometer. The agreement between
theory and experiment is excellent. The small deviation
from fourfold symmetry in the [100] projection is due to the
asymmetrical resolution function, which is qualitatively
similar for theory and experiment. For example in the
anisotropy of minority spin channel [Fig. 1(b)] at approx-
imately (�5 mrad, 0 mrad) a pronounced feature above the
radial average can be seen, which is slightly broader than at
the equivalent points (0 mrad, �5 mrad).
Figure 1(c) depicts the difference of the majority and

minority density of the measured and calculated spectra,
respectively. For this distribution, each spectrum was
normalized to unity. Since no further information is needed
to calculate the difference spectrum (note, in particular, that
the polarization of the beam and the different annihilation
rates do not influence the result), it is ideally suited to
compare theory and experiment. The structure in this image
is mainly due to the contribution of unpaired 3d electrons.
In order to assess the effect of positron enhancement we

calculated the reduced χ2 of a fit to the experimental data
using the IPM and DR enhancement, respectively.
When enhancement is included in the theory, its agree-

ment with experiment improves significantly for the sum
(4.4 × 102 to 2.0 × 102 for the [100] and 5.3 × 102 to

(a) (b) (c) FIG. 1 (color online). 2D
projections along [100] of
Cu2MnAl at room temperature.
The measured anisotropy of
(a) majority and the (b) minority
density, respectively, is com-
paredwith the theoretical results.
Thetheoreticalspectrawerecon-
volved with the resolution func-
tion of the spectrometer. The
column(c)depicts thedifference
between majority and minority
density with the total number of
counts in each spectrumnormal-
izedtoone.Thelowerrowshows
cuts through the upper pictures
as indicated by the arrows in
(a) along [001] and [011] direc-
tions for theory (orange) and
experiment (green).
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2.4 × 102 for the ½01̄1� projection), as expected. In contrast,
the enhancement only marginally improves the fit for the
difference (1.176 to 1.173 for the [100] and 1.190 to 1.187
for the ½01̄1� projection), as some of the effects of the
positron cancel out. The variation appears because the
dominant signal in the difference spectra originates from
the more localized Mn 3d electrons, where enhancement
effects are smaller. It has to be emphasized, that this result
confirms experimentally that the enhancement effects in
magnetic difference measurements are reduced as theoreti-
cally described in Refs. [45] and [46].
Theoretical calculations for the energy bands and Fermi

surfaces of Cu2MnAl were performed by Ishida et al.
[39,47]. They predicted that all the majority sheets are Γ
centered and holelike, but the minority bands generate very
small hole pockets and some larger electronlike pockets
centered on the X points. With an unrestricted spin moment
(i.e., 3.51 μB=f:u:) we can qualitatively reproduce the
results of Ishida et al.. The two larger majority sheets
are predicted to have very similar size and shape, and they
intersect the Brillouin zone (BZ) with necks at the L points.
The smaller majority hole sheet resembles an octahedron.
All three majority sheets nearly touch each other between
the Γ point and the X point. However, if we fix the magnetic
moment to 3.2 μB=f:u: as suggested by the experiment, the
small minority hole pockets are not present anymore.
The ρ2γ for both majority and minority electrons were

reconstructed as described earlier. According to the Lock-
Crisp-West (LCW) theorem [48], the densities were folded
back into the first BZ by a transformation from momentum
space to crystal momentum. Hence, the LCW transformation
restores translational invariance and reinforces the disconti-
nuities due to the Fermi surface, making it easier to see.
The spin-resolved Fermi surface sheets of Cu2MnAl from

our fixed spin moment (3.2 μB=f:u:) theoretical calculation
are presented in Fig. 2(a). Additionally, Fig. 2(b) shows a
reconstruction using our iterative approach of the calculated
data taking into account statistical noise and the experimen-
tal resolution. The reconstruction from the experimental data
is shown in Fig. 2(c). Obviously, the Fermi surface sheets of
experiment and simulation are in excellent agreement. As
expected, the sharp Fermi breaks in the 3D density become
smeared out when the spectra are convolved and when noise
is introduced. Nevertheless, we are able to determine the
topology correctly and, moreover, can discern distinct
features of the Fermi surface sheets, e.g., the small pockets
at the K point of the minority surface.
In Fig. 2(c) the occupied fraction of the BZ is given for the

experimentally determined Fermi surface sheets. We obtained
a value for the total magnetization of 3.6� 0.5 μB=f:u:, in
good agreement with other magnetization measurements
[24–28], if we assume that there are two additional com-
pletely filled bands in the majority spin channel (as also
indicated in our calculations). Hence, approximately two
thirds of the magnetic moment is contributed from tightly

bound states, while one third of the magnetic moment stems
from conduction electrons which are less tightly bound.
However, even these electrons are not completely delocalized
as Żukowski et al. reported [49].
In conclusion, through spin-polarized 2D-ACAR mea-

surements on the Heusler system Cu2MnAl, we have
demonstrated a novel approach for extracting spin-resolved
Fermi surfaces. As predicted by theory, there are unoccu-
pied states in all bands at the Γ point. The experimentally
determined Fermi surface sheets are shown to be in
excellent agreement with the theory. We emphasize that
spin-polarized 2D-ACAR is a unique technique which
offers great potential for spin-resolved measurements of
the bulk electronic structure in correlated systems at finite
temperatures.
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FIG. 2 (color online). Majority (left) and minority sheets (right)
of the Fermi surface of Cu2MnAl. Spin-resolved Fermi sheets are
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